Linear Conic Optimization for Inverse Optimal Control

نویسندگان

  • Edouard Pauwels
  • Didier Henrion
  • Jean B. Lasserre
چکیده

We address the inverse problem of Lagrangian identification based on trajectories in the context of nonlinear optimal control. We propose a general formulation of the inverse problem based on occupation measures and complementarity in linear programming. The use of occupation measures in this context offers several advantages from the theoretical, numerical and statistical points of view. We propose an approximation procedure for which strong theoretical guarantees are available. Finally, the relevance of the method is illustrated on academic examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear conic optimization for nonlinear optimal control

Infinite-dimensional linear conic formulations are described for nonlinear optimal control problems. The primal linear problem consists of finding occupation measures supported on optimal relaxed controlled trajectories, whereas the dual linear problem consists of finding the largest lower bound on the value function of the optimal control problem. Various approximation results relating the ori...

متن کامل

Inverse conic programming with applications

Linear programming duality yields e,cient algorithms for solving inverse linear programs. We show that special classes of conic programs admit a similar duality and, as a consequence, establish that the corresponding inverse programs are e,ciently solvable. We discuss applications of inverse conic programming in portfolio optimization and utility function identi0cation. c © 2004 Elsevier B.V. A...

متن کامل

CORC Technical Report TR-2003-02 Inverse conic programming and applications

The past decade has seen a growing interest in inverse optimization. It has been shown that duality yields very efficient algorithms for solving inverse linear programming problems. In this paper, we consider a special class of conic programs that admits a similar duality and show that the corresponding inverse optimization problems are efficiently solvable. We discuss the applications of inver...

متن کامل

A Unifying Optimal Partition Approach to Sensitivity Analysis in Conic Optimization∗

We study convex conic optimization problems in which the right-hand side and the cost vectors vary linearly as a function of a scalar parameter. We present a unifying geometric framework that subsumes the concept of the optimal partition in linear programming (LP) and semidefinite programming (SDP) and extends it to conic optimization. Similar to the optimal partition approach to sensitivity an...

متن کامل

Examination of Quadrotor Inverse Simulation Problem Using Trust-Region Dogleg Solution Method

In this paper, the particular solution technique for inverse simulation applied to the quadrotor maneuvering flight is investigated. The ‎trust-region dogleg (DL) technique which is proposed alleviates the weakness of Newton’s method used for numerical differentiation of system states in the solution process. The proposed technique emphasizes global convergence solution to the inverse simulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016